Микроконтроллеры MCS–51. Cтруктурная схема, АЛУ, память данных. Микроконтроллеры MCS–51: программная модель, структура, команды Схемные особенности портов

Система команд ОМЭВМ предоставляет большие возможности обработки данных, обеспечивает реализацию логических, арифметических операций, а также управление в режиме реалиного времени. Реализована побитовая, потетрадная (4 бита), побайтовая (8 бит) и 16-разрядная обработка данных.

БИС семейства MCS-51 - 8-разрядная ОМЭВМ: ПЗУ, ОЗУ, регистры специального назначения, АЛУ и внешние шины имеют байтовую организацию. Двухбайтовые данные используются только регистром-указателем (DPTR) и счетчиком команд (РС). Следует отметить, что регистр-указатель данных может быть использован как двухбайтовый регистр DPTR или как два однобайтовых регистра специального назначения DPH и DPL. Счетчик команд всегда используется как двухбайтовый регистр.

Набор команд ОМЭВМ имеет 42 мнемонических обозначения команд для конкретизации 33 функций этой системы.

Синтаксис большинства команд ассемблерного языка состоит из мнемонического обозначения функции, всед за которым идут операнды, указывающие методы адресации и типы данных. Различные типы данных или режимы адресации определяются установленными операндами, а не изменениями мнемонических обозначений.

Систему команд условно можно разбить на пять групп:

Существуют следующие типы адресации операндов-источников:

  • Косвенно-регистровая адресация по сумме базового и индексного регистров

Таблица обозначений и символов, используемых в системе команд

Обозначение, символ Назначение
А Аккумулятор
Rn Регистры текущего выбранного банка регистров
r Номер загружаемого регистра, указанного в команде
direct Прямо адресуемый 8-битовый внутренний адрес ячейка данных, который может быть ячейкой внутреннего ОЗУ данных (0-127) или SFR (128-255)
@Rr Косвенно адресуемая 8-битовая ячейка внутреннего ОЗУ данных
data8 8-битовое непосредственное данное, входящее в КОП
dataH Старшие биты (15-8) непосредственных 16-битовых данных
dataL Младшие биты (7-0) непосредственных 16-битовых данных
addr11 11-битовый адрес назначения
addrL Младшие биты адреса назначения
disp8 8-битовый байт смещения со знаком
bit Бит с прямой адресацией, адрес которого содержит КОП, находящийся во внутреннем ОЗУ данных или SFR
a15, a14...a0 Биты адреса назначения
(Х) Содержимое элемента Х
((Х)) Содержимое по адресу, хранящемуся в элементе Х
(Х)[M] Разряд М элемента Х

+
-
*
AND
OR
XOR
/X
Операции:
сложения
вычитания
умножения
деления
логического умножения (операция И)
логического сложения (операция ИЛИ)
сложения по модулю 2 (исключающее ИЛИ)
инверсия элемента Х

Мнемонические обозначения функций однозначно связаны с конкретными комбинациями способов адресации и типами данных. Всего в системе команд возможно 111 таких сочетаний. В таблице приведен перечень команд, упорядоченных по алфавиту.

Мнемоника Функция Флаги
Команда ACALL Абсолютный вызов подпрограммы
Сложение AC, C, OV
Сложение с переносом AC, C, OV
Команда AJMP Абсолютный переход
Логическое "И"
Логическое "И" для переменных-битов C
Сравнение и переход, если не равно C
Команда CLR A Сброс аккумулятора
Команда CLR Сброс бита C, bit
Команда CPL A Инверсия аккумулятора
Команда CPL Инверсия бита C, bit
Команда DA A Десятичная коррекция аккумулятора для сложения AC, C
Команда DEC <байт> Декремент
Команда DIV AB Деление C, OV
Команда DJNZ <байт>, <смещение> Декремент и переход, если не равно нулю
Команда INC <байт> Инкремент
Команда INC DPTR Инкремент указателя данных
Команда JB , Переход, если бит установлен
Команда JBC , Переход, если бит установлен и сброс этого бита
Команда JC Переход, если перенос установлен
Команда JMP @A+DPTR Косвенный переход
Команда JNB , Переход, если бит не установлен
Команда JNC Переход, если перенос не установлен
Команда JNZ Переход, если содержимое аккумулятора не равно нулю
Команда JZ Переход, если содержимое аккумулятора равно 0
Команда LCALL Длинный вызов
Команда LJMP Длинный переход
Переслать переменную-байт
Переслать бит данных C
Команда MOV DPTR,#data16 Загрузить указатель данных 16-битовой константой
Команда MOVC A,@A+() Переслать байт из памяти программ
Переслать во внешнюю память (из внешней памяти) данных

В настоящее время различными фирмами выпускается множество модификаций и аналогов этого семейства, как фирмой Intel, так и другими производителями, тактовая частота и объем памятивозросли в десятки раз и продолжают повышаться. Дополняется и набор встроенных в БИС модулей, в большое число современных моделей встроен рези- дентный быстродействующий АЦП, имеющий до 12, а сейчас может быть и более разря- дов. Но в основе семейства МСS51 БИС 8051, 80С51, 8751, 87С51, 8031, 80С31 фирмы Intel, первые образцыкоторыхбыли выпущеныв 1980 году.

Микроконтроллеры семейства MCS51 выполнены по высококачественной n-МОП технологии (серия 8ХХХ, аналог - серия 1816 в России и Белоруссии) и k-МОП техноло- гии (серия 8ХСХХ, аналог - серия 1830). Второй символ, следующий за 8 означает: 0 – РПЗУ на кристалле нет, 7 – РПЗУ объемом 4К с ультрафиолетовым стиранием. Третий символ: 3 – ПЗУ накристалленет, 5 – если нетРПЗУ, то на кристалле масочное ПЗУ.

И так 80С51 – БИС по k-МОП технологии с масочным ПЗУ на кристалле, 8031 – БИС n-МОП без памяти программ (ПЗУ, РПЗУ) на кристалле, 8751 – БИС n-МОП с ре- зидентным (размещенным на кристалле) РПЗУ с ультрафиолетовым стиранием. Мы да- лее и будем рассматривать БИС 8751, делая, если нужно оговорки об отличиях других схем, приводя те параметры, которые были опубликованы для первых серийных БИС. Дополнительную информацию о всех современных модификациях Вы, при необходимо- сти, можете найти в фирменных справочниках и технической документации.

А. Общие характеристики и назначение выводов

Основу семейство MCS51 составляет пять модификаций МК (имеющих идентич- ные основные характеристики), основное различие между которыми состоит в реали- зации памяти программ и мощности потребления (см. таблицу 3.1). Микроконтоллер восьмиразрядный, т.е. имеет команды обработки восьмиразрядных слов, имеет Гарвард- скую архитектуру, тактовая частота у базовых образцов семейства составляет 12 МГц.

Таблица 3.1.

Микро- схемы

Внутренняя память про- грамм, байт

Тип памяти программ

Внутренняя память данных, байт

Тактовая частота, МГц

Ток потреб- ления, мА

МК 8051 и 80С51 содержат масочно-программируемое при изготовлении кристалла ПЗУ памяти программ емкостью 4096 байт и рассчитаны на применение в массовой продукции. МК 8751 содержит РПЗУ емкостью 4096 байт с ультрафиолетовым стиранием и удобна на этапе разработки системы при отладке программ, а также при производстве не- большими партиями или при создании систем, требующих в процессе эксплуатации пе-

риодической подстройки.

МК 8031 и 80С31 не содержат встроенной памяти программ. Они, как и описанные ранее модификации могут использовать до 64 Кбайт внешней памяти программ и эффек- тивно использоваться в системах, требующих существенно большего по объему (чем 4 Кбайт на кристалле) ПЗУ памяти программ.

Каждый МК семейства содержит резидентную память данных емкостью 128 байт с возможностью расширения общего объема оперативной памяти данных до 64 Кбайт за счет использования внешних ИС ОЗУ.

    центральный восьмиразрядный процессор;

    память программ объемом 4 Кбайт (только 8751 и 87С51);

    память данных объемом 128 байт;

    четыре восьмиразрядных программируемых порта ввода-вывода;

    два 16-битовых многорежимных таймера/счетчика;

    систему автовекторных прерываний с пятью векторами и двумя программно управ- ляемыми уровнями приоритетов;

    последовательный интерфейс, включающий универсальный дуплексный приемопе- редатчик, способный функционировать в четырех режимах;

    тактовый генератор.

Система команд МК содержит 111 базовыхкомандс форматом1, 2, или 3 байта. Микроконтроллер имеет:

    32 регистра общего назначения РОН, организованных как четыре банка по восемь регистров с именами R0… R7, выбор того или иного банка определяется программой пу- тем установки соответствующих бит в регистре состояния программы PSW;

    128 программно-управляемых флагов (битовый процессор, см. далее);

    набор регистров специальных функций, управляющих элементами МК. Существуют следующие режимы работы микроконтроллера:

1). Общий сброс. 2).Нормальное функционирование. 3).Режим пониженно- го энергопотребления и режимхолостого хода. 4). Режим программирования ре- зидентного РПЗУ, если оно есть.

Мы здесь основное внимание уделим первым двум режимам работы, подробное описаниесоставаи работыМКвовсех режимахприведено в приложенииП1.

РОН и зона битового процессора расположены в адресном пространстве рези- дентной ОЗУ с адресами от 0 до80h.

В верхней зоне адресов резидентной оперативной памяти расположены регистры спе- циальных функций (SFR, Special Function Registers). Их назначение приведено в табл. 3.2.

Таблица 3.2.

Обозначение

Наименование

Аккумулятор

Регистр В

Регистр состояния программы

Указатель стека

Указатель данных. 2 байта:

Младший байт

Старший байт

Регистр приоритетов прерываний

Регистр разрешения прерываний

Регистр режимов таймера/счетчика

Регистр управления таймера/счетчика

Таймер/счетчик 0. Старший байт

Таймер/счетчик 0. Младший байт

Таймер/счетчик 1. Старший байт

Таймер/счетчик 1. Младший байт

Управление последовательным портом

Буфер последовательного порта

Управление потреблением

* - регистры, допускающие побитовую адресацию

Кратко рассмотрим функции регистров SFR, приведенных в таблице 3.2.

Аккумулятор АCC - регистр аккумулятора. Команды, предназначенные для рабо-

ты с аккумулятором, используют мнемонику "А", например, MOV А, Р2 . Мнемоника "АСС" используется, к примеру, при побитовой адресации аккумулятора. Так, символи- ческое имя пятого бита аккумулятора при использовании ассемблера А5М51 будет сле- дующим: АСС. 5. .

Регистр В . Используется во время операций умножения и деления. Для других инструкций регистр В может рассматриваться как дополнительный сверхоперативный регистр.

Регистр состояния программы PSW содержит информацию о состоянии про- граммы и устанавливается частично автоматически по результату выполненной опера- ции, частично пользователем. Обозначение и назначение разрядов регистра приведены соответственно в таблицах 3.3 и 3.4.

Таблица 3.3.

Обозначение

Таблица 3.4.

Обозна- чение

Назначение битов

Доступ к биту

Флаг переноса. Изменяется во время выполнения ряда арифметических и логических инструкций.

Аппаратно или программно

Флаг дополнительного переноса. Аппаратно уста- навливается/сбрасывается во время выполнения инструкций сложения или вычитания для указания переноса или заема в бите 3 при образовании младшего полубайта результата (D0-D3).

Аппаратно или программно

Флаг 0. Флаг, определяемый пользователем.

Программно

Программно

Указатель банка рабочих регистров

Программно

Банк 0 с адресами (00Н - 07Н) Банк 1 с адресами (08Н – 0FН) Банк 2 с адресами (10Н - 17Н) Банк 3 с адресами (18Н – 1FН)

Флаг переполнения. Аппаратно устанавливается или сбрасывается во время выполнения арифмети- ческих инструкций для указания состояния пере- полнения

Аппаратно или программно

Резервный. Содержит триггер, доступный по запи- си и чтению, который можно использовать

Бит четности. Аппаратно сбрасывается или уста- навливается в каждом цикле инструкций для указа- ния четного или нечетного количества разрядов ак- кумулятора, находящихся в состоянии "1".

Аппаратно или программно

Указатель стека - 8-битовый регистр, содержимое которого инкрементирует- ся перед записью данных в стек при выполнении команд PUSH и CALL. При начальном сбросе указатель стека устанавливается в 07Н, а область стека в ОЗУ данных начинается с адреса 08Н. При необходимости путем переопределения указателя стека область стека может быть расположена в любом месте внутреннего ОЗУ данных микроконтроллеры.

Указатель данных DPTR состоит из старшего байта (DPH) и младшего байта

(DPL). Содержит 16-битовый адрес при обращении к внешней памяти. Может использо-

ваться как 16-битовый регистр или как два независимых восьмибитовых регистра.

Порт0 - ПортЗ. Отдельными битами регистров специальных функций Р0, Р1, Р2, РЗ являются биты -"защелки" выводов портовР0, Р1, Р2, РЗ.

Буфер последовательного порта SBUF представляет собой два отдельных реги- стра: буфер передатчика и буфер приемника. Когда данные записываются в SBUF, они поступают в буфер передатчика, причем запись байта в SBUF автоматически иницииру- ет его передачу через последовательный порт. Когда данные читаются из SBUF, они вы- бираются из буфера приемника.

Регистры таймера. Регистровые пары (ТН0, ТL0) и (ТН1, TL1) образуют 16-

битовые счетные регистры соответственно таймера/счетчика 0 и таймера/счетчика 1.

Регистры управления. Регистры специальных функций IР, IЕ, ТМOD, ТСОN, SCON и РСОN содержат биты управления и биты состояния системы прерываний, тай-

меров/счетчиков и последовательного порта. Они будут подробно рассмотрены далее.

RxD TxD INT0 INT1 T0 T1 WR

P1.2 P1.3 P1.4 P1.5 P1.6 P1.7

RST BQ2 BQ 1 EA

P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7

P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7

P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7

МК при функционировании обеспечивает:

    минимальное время выполнения команд сложения-1 мкс;

    аппаратное умножение и деление с минимальным време- нем выполнения - 4 мкс.

В МК предусмотрена возможность задания частоты внутреннего генератора с помощью кварца, LС-цепочки или внешнего генератора.

Расширенная система команд обеспечивает побайтовую и побитовую адресацию, двоичнуюи двоично-десятичную арифметику, индикацию пере- полнения и определения четности/нечетности, воз- можность реализации логического процессора.

Важнейшей и отличительной чертой архитек- туры семейства MCS51 является то, что АЛУ может наряду с выполнением операций над 8-разрядными типами данных манипулировать одноразрядными данными. Отдельные программно-доступные биты могут быть установлены, сброшены или заменены их дополнением, могут пересылаться, проверяться и

Рис.3.2. Внешние выводы

микроконтроллера

использоваться в логических вычислениях. Тогда как поддержка простых типов данных (при сущест-

вующей тенденции к увеличению длины слова) может с первого взгляда показаться ша- гом назад, этокачестводелает микроконтроллеры семействаMCS51 особенно удобными для применений, в которых используются контроллеры. Алгоритмы работы по- следних по своей предполагают наличие входных и выходных булевых переменных, которые сложно реализовать при помощи стандартных микропроцессоров. Все эти свой- ства в целом называются булевым процессором семейства MCS51. Благодаря такому мощному АЛУ набор инструкций микроконтроллеры семейства MCS51 одинаково хоро- шо подходит как для применений управления в реальном масштабе времени, так и для ал- горитмов с большим объемом данных.

Схемотехническое изображение микроконтроллера представлено на рис. 3.2. В ба- зовом варианте он упакован в 40-выводной DIP корпус. Рассмотрим назначение выводов.

Начнем с выводов питания «0 В» и «5 В» , по которым он получает основное пита- ние. Ток потребления приведен в табл. 3.1.

Вывод «RST» - сброс микроконтроллера. При подаче на этот вывод активного вы- сокого уровня запускается режим общего сброса и МК производит следующие действия:

Устанавливает счетчик команд PC и все регистры специальных функций, кроме защелок портов Р0-РЗ, указателя стека SP и регистра SBUF, в ноль;

    указатель стека принимает значение равное 07Н;

    запрещает все источники прерываний, работу таймеров-счетчиков и последовательного

    выбирает БАНК 0 ОЗУ, подготавливает порты Р0-РЗ для приема данных и опре-

деляет выводы ALE и РМЕ как входы для внешней синхронизации;

      в регистрах специальных функций PCON, IP и IE резервные биты при- нимают случайные значения, а все остальные биты сбрасываются в ноль;

      в регистре SBUF устанавливаются случайные значения.

      устанавливает фиксаторы-защелки портов Р0-РЗ в "1".

Состояния регистров микроконтроллера после сброса приведены в таблице 3.5.

Таблица 3.5.

Информация

Неопределенная

0ХХХ0000В для k-MOП 0XXXXXXXB для n-МОП

Вывод RST имеет и альтернативную функцию. Через него подается резервное питания для сохранения неизменным содержимого ОЗУ микроконтроллера при снятии основного.

Выводы BQ1, BQ2 предназначены для подключения кварцевого резонатора, оп- ределяющего тактовую частоту работы МК.

Вывод ЕА` (E xternal A dress внешний адрес) - предназначен для активизации ре- жима чтенияуправляющих кодов из внешней памяти программ, при подаче на этот вывод активного низкогоуровня. Вывод имеет иальтернативное назначение (функцию). На него подается напряжение программирования РПЗУ в режиме программирования.

Вывод PME (P rogram M emory E nable разрешение памяти программ ) - предна- значен для управления циклом чтения из памяти программ и автоматически активизиру- ется МК в каждом машинном цикле.

Вывод ALE (A dress L ength E nable разрешение младшего адреса) стробирует вы- вод младшей части адреса по порту Р0. Вывод используется и при программировании РПЗУ, при этом на него подается стробирующий процесс программирования импульс.

МК содержит четыре группы портов: Р0, Р1, Р2, и Р3. Это оставшиеся из 40-авыводов микроконтроллера. Эти порты могут служитьдля побитного ввода – вывода информации, но помимо этого каждый из них имеет свою специализацию. Обобщенная функциональная схе- ма порта представлена на рис. 3.3. Порт содержит выходные ключи на полевых транзисторах, подключенные к выводу, переключатель функций, защелку на D-триггере и логику управле- ния. Взащелку по внутреннейшине МК можетбытьзаписана единица илиноль. Эта инфор- мация через переключатель функций поступает на выходные ключи и вывод МК. В состоя- нии единицы оба транзистора N и N1 закрыты, но открыт N2. В состоянии нуля N открывает-

ся, а N2 закрывается. В момент, когда порт выполняет альтернативную функцию, на которую онспециализирован, состояние защелкис вывода снимается. Микроконтроллер отдельно мо- жет считать состояние защелки порта и состояние его вывода, установленное внешним сигна- лом. Для этого в ассемблере МК имеются специальные команды, активизирующие соответст- вующие линии. Для чтения состояния вывода в защелку соответствующего порта должна

быть предварительно записана

От внутрен-

Управление Защелка

Переключатель функций

Vcc

Выходные

единица. При активизации линии «чтение защелки» на выходе ячейки «И», к которой подключенаэта линияпоявля-

ней шины МК D Q

Запись в защелку C Q

Чтение защелки

Вывод порта

ется состояние защелки, по- ступающее на внутреннюю шину МК, при активизации

«чтение вывода» - состояние внешнего вывода порта.

Порт Р0 – универсаль- ный двунаправленный порт

ввода-вывода. За этим портом

закреплена функция организа- ции внешних шин адресов и

Рис. 3.3. Функциональная схема порта микроконтроллера

данных для расширенияпамя- ти программ и памяти данных

микроконтроллера. Когда идет обращение к внешней памяти программ или выполняется ко- манда обращения к внешней памяти данных, на выводах порта устанавливается младшая часть адреса (А0…А7), которая стробируется высоким уровнем на выводе ALE. Затем, при записи в память данных, записываемая информация с внутренней шины МК поступает на выводы порта Р0. В операциях чтения, наоборот, информация с выводов порта поступает на внутреннюю ши- ну. Особенностью порта Р0 является отсутствие «подтягивающего» транзистора N2, обеспечи- вающего подачу питания на вывод. При записи в защелку порта единицы он просто переводит- ся в высокоимпедансное состояние, что необходимо для нормальной работы шины данных. При необходимости запитывать через вывод какие либо внешние устройства, следует преду- сматривать внешние резисторы от цепей питания на вывод порта.

Порт Р1 – универсальный двунаправленный порт ввода-вывода без альтернатив- ных функций.

Порт Р2 – универсальный двунаправленный портввода-вывода, в качестве альтер- нативной функции осуществляющий выдачу старшей части адреса (А8…А15) при обра- щении к внешней памяти.

Порт Р3 – универсальный двунаправленный порт ввода-вывода, каждый бит кото- рого предусматривает выполнениеразличныхальтернативных функций. Приэтом альтер- нативные функции реализуются только в том случае, если в защелки выводов порта запи- саны единицы, в противном случае выполнение альтернативных функций блокируется. Перечислим их раздельно для каждого бита:

Р3.0 RxD (R ead eX ternal D ate, читать внешние данные) – вход встроенного после- довательного приемо-передатчика.

Р3.1 ТxD (T ype eX ternal D ate, передавать внешние данные) – выход встроенного последовательного приемо-передатчика.

Р3.2 INT0` (INT errupt, прерывание) – вход внешнего прерывания 0.

Р3.3 INT1` – вход внешнего прерывания 1.

Р3.4 С/T0 – вход нулевого встроенного таймера/счетчика.

Р3.5 С/T1 – вход первого встроенного таймера/счетчика.

Р3.6 WR` (W rite, писать) – вывод управления циклом записи в памяти данных.

Р3.7 RD` (R ead, читать) – вывод управления циклом чтения из памяти данных.

Выводы портаР1, Р2 и Р3 способны в единице выдавать тококоло0.2мА и принимать в нуле ток 3 мА, выводы порта Р0 мощнее и способны в единице выдавать ток около 0.8мА и при- нимать в нуле ток 5 мА. Краткая информация о назначении выводов микроконтроллера приведе- на в таблице 3.6.

Таблица 3.6.

Обозначение

Назначение вывода

8-разрядныи двунаправленный порт Р1. Вход адреса А0-А7 при проверке внутреннего ПЗУ (РПЗУ)

вход/ выход

Сигнал общего сброса. Вывод резервного пита- ния ОЗУ от внешнего источника (для 1816)

8-разрядный двунаправленный порт P3 с допол- нительными функциями

вход/ выход

Последовательные данные приемника - RхD

Последовательные данные передатчика - ТхD

Вход внешнего прерывания 0- INТ0`

Вход внешнего прерывания 1-INT1`

Вход таймера/счетчика 0: - Т0

Вход таймера/счетчика 1: - Т1

Выход стробирующего сигнала при записи во внешнюю память данных: - WR`

Выход стробирующего сигнала при чтении из внешней памяти данных – RD`

Выводы для подключения кварцевого резонато- ра.

выход вход

Общий вывод

8-разрядный двунаправленный порт Р2. Выход адреса А8-А15 в режиме работы с внешней па- мятью. В режиме проверки внутреннего ПЗУ выводы Р2.0 - Р2.6 используются как вход адреса А8-А14. Вывод Р2.7 - разрешение чтения ПЗУ.

вход/ выход

Разрешение программной памяти

Выходной сигнал разрешения фиксации адреса. При программировании РПЗУ сигнал: PROG

вход/ выход

Блокировка работы с внутренней памятью. При программировании РПЗУ подается сигнал UРR

вход/ выход

8-разрядный двунаправленный порт Р0. Шина адреса/данных г работе с внешней памятью. Вы- ход данных D7-D0 в режиме проверки внутрен- него ПЗУ (РПЗУ).

вход/ выход

Вывод питания от источника напряжения +5В

Микроконтроллеры семейства МСS-51 построены по гарвардской архитектуре, в которой память программ и память данных разделе-ны, имеют собственные адресные пространства и способы доступа к ним.

Память программ


Максимальный объем памяти составляет 64К байт, из них 4К, 8К, 16К или 32К байт памяти (табл.7.3.1) располагаются на кристалле, остальной объем — вне кристалла.
При напряжении на выводе ЕА = V CC использу-ется как внутренняя, так и внешняя память, при ЕА = V CC = 0 — только внешняя па-мять.
В табл.7.3.1 приведены адреса обращения к памяти программ для указан-ных случаев.
Нижняя область памяти программ отводится для начала работы микроконт-роллера (стартовый адрес 0000h после сброса) и под обработку прерываний (ад-реса прерываний расположены с интервалом 8 байт: 0003h, 000Bh, 0013h и т.д.).


Память программ доступна только для чтения, причем при обращении:

● к внешней памяти программ вырабатывается сигнал ¯PSEN и всегда формиру-ется 16-разрядный адрес.
Младший байт адреса передается через порт P0 в первой половине машинного цикла и фиксируется по срезу строба ALE в регистре.
Во второй половине цикла порт P0 используется для ввода в МК байта данных из внешней памяти.
Старший байт адреса передается через порт P2 в течение всего времени обращения к памяти (рис.7.1.11);

● к внутренней памяти сигнал чтения не формируется и используются циклы обмена по внутренней шине микроконтроллера.

Память данных

Внутреннюю память данных можно условно разделить на три блока (табл.7.3.2).

Внутренняя память всегда адресуется байтом, который обеспечивает адреса-цию только к 256 ячейкам памяти.
Поэтому, как видно из табл.7.3.2, для адреса-ции к верхним 8-битным ячейкам внутреннего ОЗУ и регистрам специальных фун-кций SFR, занимающим одно и то же адресное пространство, в командах исполь-зуются разные способы адресации: косвенный и прямой.

Особенности организации нижней области внутреннего ОЗУ отражены в табл.7.3.3.

Младшие 32 байта внутреннего ОЗУ с адресами 00h.
1Fh сгруппированы в че-тыре банка по восемь регистров (R0.R7).
Следующие 16 байтов ОЗУ с адресами 20h.
2Fh представляют собой область памяти объемом 8×16= 128 бит, которая допускает обращение к каждому отдельному биту.
Для выбора адреса регистра банка используется его имя R0.
R7, для выбора банка — биты RS0, RS1 регистра слова состояния PSW.

Адреса битов

Адреса битов приведены в табл.7.3.3.

Адресация осуществляется прямым способом.

Список всех регистров специальных функций SFR с их адресами дан в табл.7.2.2.
Для наглядности в табл.7.3.

4 приведена карта адресов ре-гистров SFR рассматриваемых микросхем семейства MCS-51.
Адрес SFR опреде-ляется совокупностью цифр столбца и строки в шестнадцатеричной системе счисления.

Например, регистр CMOD имеет адрес D9h.

Для регистров SFR, адреса которых оканчиваются на 0h или 8h (они выделены полужирным шрифтом), помимо байтовой допускается побитовая адресация.

При этом адрес бита, занимающего в регистре N-й разряд, определяется как XXh + 0Nh, где XXh — адрес регистра SFR, N = 0.7.
Битовые адреса в этой облас-ти имеют значения от 80Н до FFH.
Например, адреса битов аккумулятора АСС ле-жат в пределах E0h-E7h.

Внешняя память данных (объемом до 64 Кбайт) создается дополнительными микросхемами памяти, подключаемыми к МК.
Для работы с внешней памятью данных используются специальные команды, поэтому адресные пространства внешней и внутренней памяти не пересекаются и, следовательно, оба вида памя-ти данных можно задействовать одновременно.

Для обращения к ячейкам внеш-ней памяти данных используются (рис.7.1.8):
● команды с косвенной адресацией;
● сигналы чтения ¯RD и записи ¯WR;
● порт P0 для передачи младшего байта адреса и приема/передачи байта данных;
● порт P2 для передачи старшего байта адреса.
Способы адресации.
В системе команд используется:
● прямая, косвенная, регистровая, косвенно-регистровая, непосредственная и индексная адресация (косвенная адресация по сумме базового и индексно-го регистров) операндов-источников;
● прямая, регистровая и косвенно-регистровая адресация операндов назначения.
Сочетание указанных способов (адресации) обеспечивает 21 режим адресации.
В этой и в приведенных ниже таблицах системы команд использованы следу-ющие обозначения:

Прямая адресация.

При этом способе адресации место расположения байта или бита данных определяется 8-битным адресом второго (и третьего) бай-та команды.
Прямая адресация используется только для обращения к внутренней памяти данных (нижним 128 байтам ОЗУ) и регистрам специальных функций.

Регистровая адресация.


Этот способ адресации обеспечивает доступ к данным, которые хранятся в одном из восьми регистров R0.
R7 текущего банка рабочих регистров.
Его также можно использовать для обращения к регистрам A, В, АВ (сдвоенному регистру), регистру-указателю DPTR и флагу переноса С.
Адрес указанных регистров заложен в код операции, благодаря чему сокращает-ся число байт команды.

Косвенно-регистровая адресация.


В этом случае адрес данных хра-нится в регистре-указателе, место расположения которого определено кодом операции.
Данный способ адресации используется для обращения к внешнему ОЗУ и верхней половине внутреннего ОЗУ.
Регистрами-указателями 8-битных ад-ресов могут служить регистры R0, R1 выбранного банка рабочих регистров или указатель стека SР, для 16-битной адресации используется только регистр указа-теля данных DPTR.

Непосредственная адресация.


При этом способе адресации данные непосредственно указаны в команде и находятся во втором (или во втором и тре-тьем) байтах команды, т.е.
не требуется адресация к памяти.
Например, по ко-манде МОV A,#50 в аккумулятор A загружается число 50.

Индексная адресация.


Этот способ представляет собой косвенно-реги-стровую адресацию, при котором адрес байта данных определяется как сумма содержимого базового (DPTR или РС) и индексного (А) регистров.
Способ ис-пользуется только для доступа к программной памяти и только в режиме чтения; он упрощает просмотр таблиц, зашитых в памяти программ.

Структура команд.

Длина команды составляет один (49 команд), два (45 ко-манд) или три (17 команд) байта.
Первый байт команды всегда содержит код опе-рации (КО), A второй и третий байты — адреса операндов или непосредственные значения данных.

В качестве операндов могут быть использованы отдельные биты, тетрады, байты и двухбайтные слова.
Можно выделить 13 типов команд, ко-торые приведены в табл.7.3.5:

● A, PC, SP, DPTR, Rn (n = 0, 7) — аккумулятор, счетчик команд, указатель стека, регистр указателя данных и регистр текущего банка;
● Rm (m = 0, 1) — регистр текущего банка, используемый при косвенной адре-сации;
● direct — 8-разрядный адрес прямо адресуемого операнда;
● bit — адрес прямо адресуемого бита;
● rel — относительный адрес перехода;
● addr11, addr16 — 11- и 16-разрядный абсолютный адрес перехода;
● #data8, #data16 — непосредственные данные (операнды) 8- и 16-разрядной длины;
● A10, A9, A0 — отдельные разряды 11-разрядного адреса;
● (.) — содержимое ячейки памяти по адресу, указанному в скобках;
● СБ, МБ — старший и младший байты 16-разрядного операнда.

Общие сведения о системе команд.

Система команд обеспечивает большие возможности обработки данных в виде бит, тетрад, байтов, двухбайтных слов, A также управления в режиме реального времени.
Для описания команд используется язык макроассемблера ASM51. Синтаксис большинства команд состоит из мнемонического обозначения (аббревиатуры) выполняемой операции, за которым следуют операнды.
С помощью операндов указываются различные способы адресации и типы данных.

В частности аббреви-атура MOV имеет 18 различных команд, предназначенных для обработки трех ти-пов данных (битов, байтов, адресов) в различных адресных пространствах.
Набор команд имеет 42 мнемонических обозначения 111 типов команд для конкрети-зации 33 функций МК.

Из 111 команд 64 выполняются за один машинный цикл, 45 — за два цикла и лишь две команды (MUL — умножение и DIV — деление) вы-полняются за 4 цикла. При частоте тактового генератора 12 МГц длительность машинного цикла (12 тактов) составляет 1 мкс. По функциональному признаку команды можно разбить на пять групп. Ниже приведено описание команд каждой группы, представленных в виде таблиц. Для компактности таблиц выделим группу команд (табл.7.3.6), выполнение которых влияет (помечены знаком +) на состояние флагов регистра слова состояния PSW.

Команды пересылки данных

Команды пересылки можно разбить на отдель-ные подгруппы.
Команды пересылки и обмена данными между ячейками внутрен-ней памяти (табл.7.3.7).

Команды 1-16, имеющие мнемонику MOV dest, src, предназначены для пересылки байта или двух байтов (команда 16) данных из ис-точника src в приемник dest, при этом:
● для указания источника (src) используется четыре способа адресации: регист-ровый (команды 2-4, 6, 8), прямой (команды 1, 7, 9, 11), косвенный (команды 5, 10) и непосредственный (команды 12-16);
● для указания приемника (dest) используется три способа: регистровый (команды 1, 3…5, 9, 12, 14, 16), прямой (команды 2, 7, 8, 10, 13), косвенный (команды 6, 11, 15).

Команды 17-20 обеспечивают обмен информацией между двумя ячейками внутренней памяти данных (или двустороннюю пересылку).
При выполнении ко-манд ХСН происходит обмен байтами, A команды XCHD — младшими тетрадами байтовых операндов.

Одной из ячеек всегда является аккумулятор A. В качестве другой ячейки при обмене байтами используется один из регистров Rn текущего банка, A также прямо или косвенно адресуемая ячейка внутренней памяти; при обмене тетрадами — только косвенно адресуемая ячейка внутренней памяти.

Так как во всех МК стек размещается во внутреннем ОЗУ, в эту же подгруппу включены команды (20, 21) обращения к стеку PUSH src, POP dest.
Эти команды ис-пользуют только прямой способ адресации, записывая байт в стек или восстанав-ливая его из стека.
Следует иметь в виду, что в тех МК, у которых в ОЗУ отсут-ствуют верхние 128 байт, увеличение стека за пределы 128 байт ведет к потере данных.

Команды пересылки данных между внутренней и внешней па-мятью данных (табл.7.3.8).

Эти команды используют только косвенную адре-сацию, при этом однобайтный адрес может располагаться в Р0 или R1 текущего банка регистров, A двухбайтный адрес — в регистре-указателе данных DРТR.
При любом доступе к внешней памяти роль приемника или источника операндов во внутренней памяти играет аккумулятор А.

Команды пересылки данных из памяти программ (табл.7.3.9).

Эти команды предназначены для чтения таблиц из программной памяти.

Команда MOVC A,@А + DPTR используется для обращения к таблице с числом входов от 0 до 255.

Номер требуемого входа в таблицу загружается в аккумулятор, A регистр DPTR устанавливается на точку начала таблицы. Отличительной особенностью другой команды является то, что в качестве указателя базы используется про-граммный счетчик PC и обращение к таблице производится из подпрограммы. Вначале номер требуемой точки входа загружается в аккумулятор, затем вызыва-ется подпрограмма с командой MOVC A,@А + PC. Таблица может иметь 255 вхо-дов с номерами от 1 до 255, так как 0 используется для адреса команды RET вы-хода из подпрограммы.

Команды арифметической обработки данных. Все арифметические коман-ды выполняются над беззнаковыми целыми числами. Операции над двумя операндами (табл.7.3.10). В операциях сложе-ния ADD, сложения с учетом переноса ADDC и вычитания с учетом заема SUBB:

● источником одного 8-битного операнда и приемником результата служит ак-кумулятор;
● источником другого операнда — либо один из рабочих регистров Rn (n = 0-7) текущего банки, либо прямо direct или косвенно @Rm (m = 0, 1) адресуемая ячейка памяти ОЗУ, либо непосредственные данные #data.

Операции умножения MUL и деления DIV выполняются над содержимым реги-стров A и В. При умножении старшие 8 разрядов результата записываются в ре-гистр В, младшие 8 разрядов — в регистр A.
Если произведение больше 255, устанавливается флаг переполнения OV; флаг переноса С всегда сбрасывается. Команда DIV выполняет деление 8-битного операнда аккумулятора A на 8-битный операнд регистра В.
При делении частное (старшие разряды) записывается в ре-гистр в A, остаток (младшие разряды) — в B. Флаги переноса C и переполнения OV сбрасываются.
При попытке деления на 0 устанавливается флаг переполнения OV. Операция деления чаще используется для сдвигов и преобразования оснований чисел.

При делении двоичного числа на 2 N происходит его сдвиг на N бит влево.
Лишние биты переносятся в регистр В.

Операции над однобайтными операндами (табл.7.3.11).

Команда DA используется для выполнения двоично-десятичных операций. Команды INC, DEC позволяют соответственно увеличить или уменьшить на единицу содержимое ячейки памяти.
Они применимы к содержимому аккумулято-ра A, одного из рабочих регистров Rn или ячейки памяти, адресуемой как пря-мым, так и косвенным способом.
Операция увеличения на единицу применима также к содержимому 16-разрядного регистра-указателя DPTR.

Команды логических операций.

Двуместные операции

(табл.7.3.12).

Команды AML, ORL, XRL позволяют выполнить три двуместные логические операции над 8-битными операндами: ANL — логическое умножение (AND), ORL — ло-гическое сложение (OR), XRL — исключающее ИЛИ (XOR).
Операции выполняются над отдельными битами операндов. Источником одного из операндов и одновре-менно приемником результата служит либо аккумулятор (А), либо прямо адресу-емая ячейка памяти (direct).
Для источника другого операнда используется реги-стровый, прямой, косвенный или непосредственный способ адресации.

Одноместные операции

(табл.7.3.13).
В состав группы входит также ряд одноместных операций над содержимым аккумулятора A: операции очистки (CLR), логического дополнения или инверсии (CPL), циклического и расширенного циклического сдвигов на 1 бит вправо (RL, RLC) и влево (RR, RRC), обмена тетрад или циклического сдвига байта на 4 разряда (SWAP), A также пустая операция (NOP), в результате которой состояние всех регистров МК (за исключением про-граммного счетчика) остается неизменным.

Команды передачи управления

Команды безусловного перехода

(табл.7.3.14).

Команды 1-3 отличаются лишь форматом адреса назначения.

Ко-манда LJMP (L — Long) выполняет «длинный» безусловный переход по указанному адресу addr16, загружая счетчик PC вторым и третьим байтами команды.
Команда обеспечивает переход в любую точку 64К байтного адресного пространства.

Ко-манда AJMP (А — Absolute) обеспечивает «абсолютный» переход по адресу внутри 2К байтной страницы, начальный адрес которой задается пятью старшими разря-дами программного счетчика PC (вначале содержимое PC увеличивается на 2).

Команда SJMP (S — Short) позволяет осуществить «короткий» безусловный переход по адресу, который вычисляется сложением смещения rel со знаком во втором байте команды с содержимым счетчика PC, предварительно увеличенного на 2.

Адрес перехода находится в пределах -128+127 байт относительно адре-са команды.
Для перехода в любую другую точку 64-килобайтного адресного про-странства может быть использована также команда 4 с косвенной @A+DPTR адре-сацией.
В этом случае содержимое A интерпретируется как целое без знака.

Пустая операция (NOP), в результате которой состояние всех регистров мик-ропроцессора (за исключением программного счетчика) остается неизменным.

Команды условного перехода

(табл.7.3.15).

С помощью команд JZ и JNZ осуществляется переход, если содержимое аккумулятора соответственно равно или не равно нулю.
Адрес перехода вычисляется путем сложения относительного знакового смещения rel с содержимым счетчика команд PC после прибавления к нему числа 2 (длины команды в байтах).

Содержимое аккумулятора остается не-изменным.
Команды на флаги не влияют.

Команды CJNE (3-6) служат для реализации условного перехода по результату сравнения двух 8-разрядных операндов, расположение которых указано в коман-дах.
Если их значения не равны, осуществляется переход.

Адрес перехода вычис-ляется сложением смещения rel с содержимым счетчика PC, предварительно уве-личенным на 3.
В противном случае выполняется следующая команда.

В графе Алгоритм показано влияние значений сравниваемых 8-разрядных операндов на флаг переноса С.
Команды DJNZ (7, предназначены для организации программных циклов.

Регистр Rn или прямо (direct) адресуемая ячейка представляют собой счетчик по-вторений цикла, A смещение rel (во втором и третьем байтах команд) — относи-тельный адрес перехода к началу цикла.
При выполнении команд содержимое счетчика уменьшается на единицу и проверяется на нуль.
Если содержимое счет-чика не равно нулю, осуществляется переход на начало цикла.
В противном слу-чае выполняется следующая команда.

Адрес перехода вычисляется сложением смещения с содержимым счетчика, предварительно увеличенным на длину ко-манды (на 2 или 3).
На флаги команды не влияют.

Команды вызова подпрограмм и возврата из программ

(табл.7.3.16).
Команды LCALL «длинный вызов» и ACALL «абсолютный вызов» осуществляют безусловный вызов подпрограммы, размещенной по указанному адресу.

Отличие этих команд от рассмотренных выше команд безусловного перехода состоит в том, что они сохраняют в стеке адрес возврата (содержимое счетчика) в основ-ную программу.
Команда возврата из подпрограммы RET восстанавливает из стека значение содержимого счетчика команд, A команда RETI помимо этого разрешает преры-вания обслуживающего уровня.

В командах передачи управления широко используется относительная адреса-ция, которая поддерживает перемещаемые программные модули.
В качестве отно-сительного адреса выступает 8-разрядное смещение rel со знаком, обеспечиваю-щее ветвление от текущего положения счетчика PC в обе стороны на ±127 байт.

Для перехода в любую другую точку 64К-байтного адресного пространства может быть использован либо прямой адрес addr16, либо косвенный @A+DPTR адрес.
В последнем случае содержимое A интерпретируется как целое без знака.

Вари-ант короткой прямой адресации addr11 внутри 2К-байтной текущей страницы вве-ден для совместимости с архитектурой МК48.

Все эти типы адресации могут быть применены только к операции перехода, A для операции вызова допустимы только прямой addr16 и внутренний addr11 способы адресации.
Во всех условных операциях может использоваться только относительная адресация.

Когда МК51 опознает запрос на прерывание, он генерирует одну из команд типа LCALL addr16, что автоматически обеспечивает запоминание адреса возврата в стеке.
Однако в отличии от МК48 в МК51 нет автоматически сохраняемой ин-формации о состоянии.

При этом логика прерываний перестает срабатывать на запросы того уровня, который был принят к обслуживанию.
Для понижения уров-ня прерывания служит команда возврата из прерывания RETI, которая кроме опе-рации, эквивалентной RET, включает операцию разрешения прерывания данного уровня.
К типовым условным операциям МК51 относятся также операции JZ, JNZ.
Од-нако появилась новая операция «Сравнить и перейти» CJNE.

По данной команде операнд сначала сравнивается по правилам вычитания целых чисел с константой и в соответствии с результатом сравнения выставляется флаг CY Затем в случае несовпадения с константой выполняется ветвление. Сравнивая аккумулятор, ре-гистр или ячейку памяти с последовательностью констант, получаем удобный способ проверки на совпадения, например с целью выявления особых случаев.

По сути дела команда CJNE является элементом оператора языков высокого уров-ня типа CASE.

Дальнейшее развитие получила команда DJNZ.
Теперь программист в качестве счетчика может использовать не только один из рабочих регистров Rn, но и лю-бую ячейку памяти DSEG.

Команды битовых операций.

Группа состоит из 12 команд, позволяющих вы-полнять операции над одним или двумя битами (сброс, установку, инверсию бита, A также логические И и ИЛИ), и 5 команд, предназначенных для реализации условных переходов (табл.7.3.17).

Команды обеспечивают прямую адресацию 128 битов, расположенных в шест-надцати ячейках внутреннего ОЗУ с адресами 20h.
2Fh (табл.7.3.3), и 128 битов, расположенных в регистрах специального назначения, адреса которых кратны восьми (выделены в табл.7.3.4 полужирным шрифтом).

При выполнении опера-ций над двумя одноразрядными операндами в качестве логического аккумулято-ра используется триггер регистра PSW, хранящий флаг переноса C (табл.7.1.2).

Команды MOV (1,2) осуществляют пересылку бита из одной прямо адресу-емой битовой ячейки внутреннего ОЗУ в триггер C или в обратном направлении.
Команды CRL (3, 4), SETB (5, 6) соответственно сбрасывают в нуль или устанавли-вают в единицу флаг переноса C или указанный бит.
С помощью команд CPL, ANL, ORL (7-12) выполняются логические операции инверсии, сложения и умножения.

В группу входят также команды (13-17) для реализации операций условных переходов с относительным 8-разрядным смещением rel.
Переходы могут быть реализованы как при установленном бите или флаге переноса (команды 13, 16), так и при сброшенном (команды 14, 17).

Команда JBC помимо перехода по вычис-ляемому адресу при выполнении условия (бит) = 1 производит сброс этого бита в нулевое состояние.
При выполнении команд условных переходов адрес перехо-да вычисляется после прибавления к содержимому счетчика чисел 3 или 2 (отра-жающих число байт в команде).

Архитектура семейства MCS-51 в значительной мере предопределяется ее назначением - построение компактных и дешевых цифровых устройств. Все функции микроЭВМ реализуются с помощью единственной микросхемы. В состав семейства MCS-51 входит целый ряд микросхем от самых простых микроконтроллеров до достаточно сложных. Микроконтроллеры семейства MCS-51 позволяют выполнять как задачи управления различными устройствами, так и реализовывать отдельные узлы аналоговой схемы. Все микросхемы этого семейства работают с одной и той же системой команд , большинство из них выполняется в одинаковых корпусах с совпадающей цоколевкой (нумерация ножек для корпуса). Это позволяет использовать для разработанного устройства микросхемы разных фирм — производителей (таких как Intel, Dallas, Atmel, Philips и т.д.) без переделки принципиальной схемы устройства и программы .

Рисунок 1. Структурная схема контроллера К1830ВЕ751

Структурная схема контроллера представлена на рисунке 1. и состоит из следующих основных функциональных узлов: блока управления, арифметико-логического устройства, блока таймеров/счетчиков, блока последовательного интерфейса и прерываний, программного счетчика, памяти данных и памяти программ. Двусторонний обмен осуществляется с помощью внутренней 8-разрядной магистрали данных. Рассмотрим подробнее назначение каждого блока. По такой схеме построены практически все представители семейства MCS-51 . Различные микросхемы этого семейства различаются только регистрами специального назначения (в том числе и количеством портов). Система команд всех контроллеров семейства MCS-51 содержит 111 базовых команд с форматом 1, 2 или 3 байта и не изменяется при переходе от одной микросхемы к другой. Это обеспечивает прекрасную переносимость программ с одной микросхемы на другую.

Блок управления и синхронизации

Блок управления и синхронизации (Timing and Control) предназначен для выработки синхронизирующих и управляющих сигналов, обеспечивающих координацию совместной работы блоков ОЭВМ во всех допустимых режимах ее работы.В состав блока управления входят:

  • устройство формирования временных интервалов,
  • логика ввода-вывода,
  • регистр команд,
  • регистр управления потреблением электроэнергии,
  • дешифратор команд, логика управления ЭВМ.

Устройство формирования временных интервалов предназначено для формирования и выдачи внутренних синхросигналов фаз, тактов и циклов. Количество машинных циклов определяет продолжительность выполнения команд. Практически все команды ОЭВМ выполняются за один или два машинных цикла, кроме команд умножения и деления, продолжительность выполнения которых составляет четыре машинных цикла. Обозначим частоту задающего генератора через F г. Тогда длительность машинного цикла равна 12/F г или составляет 12 периодов сигнала задающего генератора. Логика ввода - вывода предназначена для приема и выдачи сигналов, обеспечивающих обмен информации с внешними устройствами через порты ввода вывода Р0-Р3.

Регистр команд предназначен для записи и хранения 8-ми разрядного кода операции выполняемой команды. Код операции, с помощью команд и логики управления ЭВМ, преобразуется в микропрограмму выполнения команды.

Регистр управления потреблением (PCON ) позволяет останавливать работу микроконтроллера для уменьшения потребления электроэнергии и уменьшения уровня помех от микроконтроллера. Еще большего уменьшения потребления электроэнергии и уменьшения помех можно добиться, остановив задающий генератор микроконтроллера. Этого можно достичь при помощи переключения бит регистра управления потреблением PCON. Для варианта изготовления по технологии n-МОП (серия 1816 или иностранных микросхем, в названии которых в середине отсутствует буква "c") регистр управления потреблением PCON содержит только один бит, управляющий скоростью передачи последовательного порта SMOD, а биты управления потреблением электроэнергией отсутствуют.

Вместе со статьей "Архитектура микроконтроллеров MCS-51" читают:


http://сайт/MCS51/tablms.php


http://сайт/MCS51/SysInstr.php


http://сайт/MCS51/port.php

УДК 681.5, 681.325.5 (075.8)

ББК 32.973.202-018.2 я 73

Щербина А. Н. Вычислительные машины, системы и сети. Микроконтроллеры и микропроцессоры в системах управления: у чеб. пособие / А.Н. Щербина, П.А. Нечаев- СПб.: Из-во Политехн. ун-та, 2012.-226 с.

Соответствует содержанию государственного образовательного стандарта направлений подготовки и специальностей в области управления в технических системах, электроэнергетики и электротехники и содержанию примерной учебной программы дисциплины «Вычислительные машины, системы и сети».

Рассмотрены фундаментальные вопросы логической организации микропроцессорных систем на примере базовой архитектуры микроконтроллерного семейства MCS-51 фирмы Intel. Описана технология программирования микроконтроллеров на языках Ассемблер и СИ.

Может быть полезным для студентов и преподавателей высших технических заведений, специалистов по автоматизации технологических процессов и производственного оборудования, а также для инженеров-проектировщиков микропроцессорных систем.

Также соответствует содержанию государственного образовательного стандарта дисциплин «Микроконтроллеры и микропроцессоры в системах управления» и «Электронные устройства автоматики» бакалаврской, инженерной и магистерской подготовки по направлению 140400 «Электроэнергетика и электротехника».

Печатается по решению редакционно-издательского совета

Санкт-Петербургского государственного политехнического университета.

© Щербина А. Н., Нечаев П. А., 2012

© Санкт-Петербургский государственный

политехнический университет, 2012

ISBN 978-5-7422-3553-8


Введение.. 7

Глава 1. Архитектура семейства MCS51. 10

1.1 Общие характеристики 10

1.2 Структурная схема 11



1.3 Назначение выводов микроконтроллера 8051 15

1.4 Организация памяти 17

1.4.1 Память программ (ПЗУ) 18

1.4.2 Память данных (ОЗУ) 19

1.4.3 Регистры специальных функций. 20

1.4.4 Регистр флагов (PSW) 23

1.5 Устройство управления и синхронизации 26

1.6 Организация портов ввода-вывода 27

1.6.1 Общие сведения. 27

1.6.2 Альтернативные функции. 27

1.7. Таймеры / счетчики микроконтроллеров семейства 8051. 28

1.7.1. Структура таймеров-счетчиков. 28

1.7.2 Режимы работы таймеров-счетчиков. 30

1.8. Последовательный порт 32

1.8.1. Структура последовательного порта. 32

1.8.2. Регистр управления/статуса приемопередатчика SCON.. 34

1.8.3. Регистр управления мощностью PCON.. 36

1.9. Система прерываний 37

1.9.1. Структура системы прерываний. 37

1.9.2 Выполнение подпрограммы прерывания. 40

Глава 2. Особенности микроконтроллера 80C51GB.. 42

2.1 Функциональные особенности 42

2.2 Порты I/O P0-P5 43

2.2.1 Функционирование портов ввода-вывода. 43

2.2.2 Запись в порт.. 46

2.3 Особенности системы прерываний 8XC51GB.. 49

Разрешение/запрещение прерываний. 50

Управление приоритетами прерываний. 51

Внешние прерывания. 54

2.3. Узел АЦП 56

2.4. Аппаратный сторожевой таймер 61

2.5. Обнаружение сбоя тактового генератора 63

2.6. Матрица программируемых счётчиков РСА 64

2.6.1. Структура PCA.. 64

2.6.2. Регистр режима счётчика РСА (CMOD) 66

2.6.3. Регистр управления счётчика РСА (CON) 67

2.6.4. Модули сравнения/фиксации. 68

2.7. Расширенный последовательный порт 76

2.8. Таймеры/счетчики 79

Расположение выводов микроконтроллеров группы 8XC51GB.. 86

Глава 3. Программирование MK 8051GB.. 89

3.1. Программная модель 89

3.2 Типы данных 93

3.3 Способы адресации данных 93

3.4 Система команд 95

3.4.1 Общая характеристика. 95

3.4.2 Типы команд. 96

3.4.3 Типы операндов. 97

3.4.4 Команды пересылки данных микроконтроллера. 98

3.4.5 Команды арифметических операций 8051. 101

3.4.6 Команды логических операций микроконтроллера 8051. 104

3.4.7 Команды операций над битами микроконтроллера 8051. 106

3.5 Отладка программ 111

Глава 4. Язык программирования ASM-51. 112

4.2 Запись текста программы 113

4.3 Алфавит языка. 114

4.4 Идентификаторы. 115

4.5 Числа 117

4.6 Директивы 118

4.7 Реализация подпрограмм на языке ASM51 122

4.7.1 Структура подпрограммы-процедуры на языке ASM51. 122

4.7.2 Передача переменных-параметров в подпрограмму. 123

4.7.3 Реализация подпрограмм-функций на языке ASM51. 123

4.7.4 Реализация подпрограмм обработки прерываний на языке ASM51. 124

4.8 Структурное программирование на языке ассемблера. 125

4.9 Особенности трансляции многомодульных программ.. 126

4.10 Использование сегментов 128

4.10.1 Разбиение памяти МК на сегменты.. 128

4.10.2 Абсолютные сегменты памяти. 129

4.10.2 Перемещаемые сегменты памяти. 131

Глава 5. Язык программирования С-51. 134

5.1 Общая характеристика языка 134

5.3 Структура программ С-51 136

5.3. Элементы языка программирования С-51 138

5.3.1. Символы.. 138

5.3.2. Лексические единицы, разделители и использование пробелов. 141

5.3.3 Идентификаторы.. 142

5.3.4 Ключевые слова. 143

5.3.5 Константы.. 143

5.4. Выражения в операторах языка 146

программирования C-51 146

5.5. Приоритеты выполнения операций 148

5.6. Операторы языка программирования C-51 149

5.6.1. Операторы объявления. 150

5.6.2 Исполняемые операторы.. 150

5.6.3 Оператор присваивания. 151

5.6.4 Условный оператор. 151

5.6.5 Структурный оператор {}. 152

5.6.6 Оператор цикла for. 152

5.6.7 Оператор цикла с проверкой условия до тела цикла while. 153

5.6.8 Оператор цикла с проверкой условия после тела цикла do while. 154

5.6.9 Оператор break. 155

5.6.10 Оператор continue. 155

5.6.11 Оператор выбора switch. 155

5.6.12 Оператор безусловного перехода goto. 157

5.6.13 Оператор выражение. 158

5.6.14 Оператор возврата из подпрограммы return. 158

5.6.15 Пустой оператор. 158

5.7. Объявление переменных в языке программирования C-51. 159

5.7.1. Объявление переменной. 159

5.7.3 Целые типы данных. 161

5.7.4 Числа с плавающей запятой. 162

5.7.5 Переменные перечислимого типа. 162

5.7.6. Объявление массивов в языке программирования C-51. 164

5.7.7. Структуры.. 165

5.7.8. Объединения (смеси) 166

5.8. Использование указателей в языке C-51 167

5.8.1. Объявление указателей. 167

5.8.2. Нетипизированные указатели. 168

5.8.3. Память зависимые указатели. 169

5.9. Объявление новых типов переменных 169

5.10. Инициализация данных 170

5.11. Использование подпрограмм в языке программирования С-51. 170

5.11.1. Определение подпрограмм.. 171

5.11.2. Параметры подпрограмм.. 173

5.11.3. Предварительное объявление подпрограмм.. 174

5.11.4 Вызов подпрограмм.. 176

5.11.5 Рекурсивный вызов подпрограмм.. 176

5.11.6 Подпрограммы обработки прерываний. 177

5.11.7 Области действия переменных и подпрограмм.. 178

5.12. Многомодульные программы 179

Глава 6. Подготовка программ в интегрированной среде разработки Keil μVision2. 182

6.1 Создание проекта на языке ASM-51 182

6.2 Пример создания проекта на языке C для учебного контроллера в интегрированной среде разработки Keil μVision2 188

Глава 7. Описание учебного контроллера.. 199

7.1. Структура контроллера 199

7.2. Адресное пространство 200

7.2.1. Распределение памяти. 200

7.2.2 Внешняя память. 201

7.2.3. Внутренняя память данных. 202

7.3. Распределение портов ввода-вывода 202

7.4. Последовательный порт………………………………...203

7.5. Работа с ЖКИ 205

7.6. Панели контроллера…………………………………………………213

ПРИЛОЖЕНИЕ П2 СТРУКТУРА ОТЧЁТА О ЛАБРОРАТОРНОЙ РАБОТЕ……..217

Приложение П3 Коды машинных команд. 217

Список литературы... 224


Введение

В освоении специальностей, связанных с автоматизацией технологических процессов и производств, изучение микроконтроллеров является одним из важных разделов.

В мире происходит непрерывное развитие и появление все новых и новых 16- и 32-разрядных микроконтроллеров и микропроцессоров, но наибольшая доля мирового микропроцессорного рынка и по сей день остается за 8-разрядными устройствами. По всем прогнозам аналитических компаний на ближайшее время, лидирующее положение 8-разрядных микроконтроллеров на мировом рынке сохранится.

В настоящее время среди всех 8-разрядных микроконтроллеров семейство MCS-51 является несомненным лидером по количеству разновидностей и количеству компаний, выпускающих его модификации. Оно получило свое название от первого представителя этого семейства - микроконтроллера 8051. Удачный набор периферийных устройств, возможность гибкого выбора внешней или внутренней программной памяти и приемлемая цена обеспечили этому микроконтроллеру успех на рынке.

Достоинства семейства MCS-51:

· архитектура, являющаяся стандартом де-факто;

· чрезвычайная широта семейства и разнообразие возможностей;

· наличие высокопроизводительных и расширенных версий процессоров;

· значительное число свободно доступных программных и аппаратурных наработок;

· легкость аппаратного программирования, в т. ч. и внутрисхемного;

· дешевизна и доступность базовых чипов;

· наличие специализированных версий контроллеров для особых условий применения

· наличие версий контроллеров с пониженным уровнем электромагнитных помех;

· широкая известность среди разработчиков старшего поколения, как в мире, так и в странах СНГ;

· поддержка архитектуры ведущими учебными заведениями мира.

И, наконец, главное преимущество: освоив базовый чип семейства, легко начнеть работать с такими вычислительными «монстрами», как микроконтроллеры Cygnal, Dallas Semiconductor, Analog Devices, Texas Instruments.

В состав семейства MCS-51 входит целый ряд микросхем от самых простых микроконтроллеров до достаточно сложных. На сегодняшний день существует более 200 модификаций микроконтроллеров семейства 8051, выпускаемых почти 20-ю компаниями. Каждый год появляются все новые варианты представителей этого семейства.

Основными направлениями развития являются:

· увеличение быстродействия (повышение тактовой частоты и переработка архитектуры);

· снижение напряжения питания и энергопотребления;

· увеличение объема ОЗУ и FLASH памяти на кристалле с возможностью внутрисхемного программирования;

· введение в состав периферии микроконтроллера сложных устройств типа системы управления приводами, CAN и USB интерфейсов и т.п.

Микроконтроллеры семейства MCS-51 позволяют выполнять как задачи управления различными устройствами, так и реализовывать отдельные узлы аналоговой схемы. Все микросхемы этого семейства работают с одной и той же системой команд. Большинство из них выполняется в одинаковых корпусах с совпадающей цоколевкой (нумерация ножек для корпуса). Это позволяет использовать для разработанного устройства микросхемы разных фирм - производителей без переделки принципиальной схемы устройства и программы.

Основными производителями разновидностей 51-го семейства в мире являются фирмы Philips, Siemens, Intel, Atmel, Dallas, Temic, Oki, AMD, MHS, Gold Star, Winbond, Silicon Systems и ряд других.

Характеристики аналогов микроконтроллеров семейства MCS-51 (Intel 8XC51FA, 8XC51GB, 80С152) с расширенными возможностями приведены в табл. В.1.

Таблица В.1

ОЗУ ПЗУ РСА АЦП WDT T/C Послед. Каналы Особенности
Atmel: AT89C2051
- - - - UART Flash 2 Кб
AT89C4051 - - - - UART Flash 4 Кб
AT89S4D12 128K - - - UART, SPI Flash 4 Кб
DALLAS Semiconductor: DS5000FP
- - - + UART Bootstrap loader
DS5001FP - - - + UART Bootstrap loader
DS8xC520 16K - - + 2xUART 2 DPTR
SIEMENS: C505C
16K - + + UART, CAN 8 DPTR
C515C 64K - + + UART+ SSC+CAN 4 ШИМ, 8 DPTR
Philips: *89C51RA+
- + - + UART 2 DPTR, 4 ур. прер., clock out, Flash 8K
P51XAG1x 8K - - + 2 UART
Intel: 8xC51RA
8K - + + UART 4 уровня IRQ, clock out
8XC196KC 64K 16K - + - UART 3 ШИМ
80C196KB 64K 8K - + - UART ШИМ

Глава 1. Архитектура семейства MCS51

8-разрядные однокристальные микроконтроллеры семейства MCS-51 приобрели большую популярность у разработчиков микропроцессорных систем контроля благодаря удачно спроектированной архитектуре. Архитектура микроконтроллера – это совокупность внутренних и внешних программно-доступных аппаратных ресурсов и системы команд. Архитектура семейства MCS-51 в значительной мере предопределяется ее назначением - построение компактных и дешевых цифровых устройств. Микроконтроллеры, выполняющие все функции микроЭВМ с помощью единственной микросхемы, получили название однокристальных ЭВМ (ОЭВМ).

Фирма Intel выпустила около 50 моделей на базе операционного ядра микроконтроллера Intel 8051. Одновременно многие другие фирмы, такие как Atmel, Philips, начали производство своих микроконтроллеров, разработанных в стандарте MCS-51.

Общие характеристики

Основные характеристики семейства:

· 8-разрядный центральный процессор (ЦП), ориентированный на управление исполнительными устройствами;

· ЦП имеет встроенную схему 8-разрядного аппаратного умножения и деления чисел;

· наличие в наборе команд большого количества операций для работы с прямоадресуемыми битами даёт возможность говорить о процессоре для работы с битовыми данными (булевом процессоре);

· внутренняя (расположенная на кристалле) память программ масочного или репрограммируемого типа, имеющая для различных кристаллов объём от 4 до 32 Кб, в некоторых версиях она отсутствует;

· не менее чем 128 байтное резидентное ОЗУ данных, которое используется для организации, регистровых банков, стека и хранения пользовательских данных;

· не менее 32-х двунаправленных интерфейсных линий (портов), индивидуально настраиваемых на ввод или вывод информации;

· два 16-битных многорежимных счетчика/таймера, используемых для подсчёта внешних событий, организации временных задержек и тактирования коммуникационного порта;

· двунаправленный дуплексный асинхронный приемопередатчик (UART), предназначенный для организации каналов связи между микроконтроллером и внешними устройствами с широким диапазоном скоростей передачи информации. Имеются средства для аппаратно-программного объединения микроконтроллеров в связанную систему;

· двухуровневая приоритетная система прерываний, поддерживающая не менее 5 векторов прерываний от 4-х внутренних и 2-х внешних источников событий;

· встроенный тактовый генератор.

Структурная схема

Структурная схема контроллера представлена на рис.1.1 и состоит из следующих основных функциональных узлов: блока управления, арифметико-логического устройства, блока таймеров/счетчиков, блока последовательного интерфейса и прерываний, программного счетчика, памяти данных и памяти программ. Двусторонний обмен осуществляется с помощью внутренней 8-разрядной магистрали данных. По такой схеме построены практически все представители семейства MCS-51. Различные микросхемы этого семейства различаются только регистрами специального назначения (в том числе и количеством портов).

Блок управления и синхронизации (Timing and Control) - предназначен для выработки синхронизирующих и управляющих сигналов, обеспечивающих координацию совместной работы блоков ОЭВМ во всех допустимых режимах ее работы. В состав блока управления входят:

устройство формирования временных интервалов;

логика ввода-вывода;

регистр команд;

регистр управления потреблением электроэнергии;

дешифратор команд, логика управления ЭВМ.

Рис. 1.1. Структурная схема контроллера I8051.

Устройство формирования временных интервалов предназначено для формирования и выдачи внутренних синхросигналов фаз, тактов и циклов. Количество машинных циклов определяет продолжительность выполнения команд. Практически все команды ОЭВМ выполняются за один или два машинных цикла, кроме команд умножения и деления, продолжительность выполнения которых составляет четыре машинных цикла. Обозначим частоту задающего генератора через F г. Длительность машинного цикла равна 12/F г или составляет 12 периодов сигнала задающего генератора. Логика ввода - вывода предназначена для приема и выдачи сигналов, обеспечивающих обмен информации с внешними устройствами через порты ввода вывода Р0-Р3.

Регистр команд предназначен для записи и хранения 8-ми разрядного кода операции выполняемой команды. Код операции, с помощью дешифратора команд и логики управления ЭВМ, преобразуется в микропрограмму выполнения команды.

Регистр управления потреблением (PCON) позволяет останавливать работу микроконтроллера для уменьшения потребления электроэнергии и уменьшения уровня помех от микроконтроллера. Еще большего уменьшения потребления электроэнергии и уменьшения помех можно добиться, остановив задающий генератор микроконтроллера. Этого можно достичь при помощи переключения бит регистра управления потреблением PCON. Для варианта изготовления по технологии n-МОП (серия 1816 или иностранных микросхем, в названии которых в середине отсутствует буква "c") регистр управления потреблением PCON содержит только один бит, управляющий скоростью передачи последовательного порта SMOD, а биты управления потреблением электроэнергией отсутствуют.

Арифметико-логическое устройство (ALU) представляет собой параллельное восьмиразрядное устройство, обеспечивающее выполнение арифметических и логических операций. АЛУ состоит из:

регистров аккумулятора, регистров временного хранения TMP1 и TMP2;

ПЗУ констант;

сумматора;

дополнительного регистра (регистра В);

аккумулятора (ACC);

регистра состояния программ (PSW).

Регистр аккумулятор и регистры временного хранения - восьмиразрядные регистры, предназначенные для приема и хранения операндов на время выполнения операций над ними. Эти регистры программно не доступны.

ПЗУ констант обеспечивает выработку корректирующего кода при двоично-десятичном представлении данных, кода маски при битовых операциях и кода констант.

Параллельный восьмиразрядный сумматор представляет собой схему комбинационного типа с последовательным переносом, предназначенную для выполнения арифметических операций сложения, вычитания и логических операций сложения, умножения, неравнозначности и тождественности.

Регистр B - восьмиразрядный регистр, используемый во время операций умножения и деления. Для других инструкций он может рассматриваться как дополнительный сверхоперативный регистр.

Аккумулятор - восьмиразрядный регистр, предназначенный для приема и хранения результата, полученного при выполнении арифметико-логических операций или операций сдвига

Блок последовательного интерфейса и прерываний (ПИП) предназначен для организации ввода - вывода последовательных потоков информации и организации системы прерывания программ. В состав блока входят:

буфер ПИП;

логика управления;

регистр управления;

буфер передатчика;

буфер приемника;

приемопередатчик последовательного порта;

регистр приоритетов прерываний;

регистр разрешения прерываний;

логика обработки флагов прерываний и схема выработки вектора.

Счетчик команд (Program Counter) предназначен для формирования текущего 16-разрядного адреса внутренней памяти программ и 8/16-разрядного адреса внешней памяти программ. В состав счетчика команд входят 16-разрядные буфер РС, регистр РС и схема инкремента (увеличения содержимого на 1).

Память данных (RAM) предназначена для временного хранения информации, используемой в процессе выполнения программы.

Порты P0, P1, P2, P3 являются квазидвунаправленными портами ввода - вывода и предназначены для обеспечения обмена информацией ОЭВМ с внешними устройствами, образуя 32 линии ввода- вывода.

Регистр состояния программы (PSW) предназначен для хранения информации о состоянии АЛУ при выполнении программы.

Память программ (EPROM) предназначена для хранения программ и представляет собой постоянное запоминающее устройство (ПЗУ). В разных микросхемах применяются масочные, стираемые ультрафиолетовым излучением или FLASH ПЗУ.

Регистр указателя данных (DPTR) предназначен для хранения 16 - разрядного адреса внешней памяти данных.

Указатель стека (SP) представляет собой восьмиразрядный регистр, предназначенный для организации особой области памяти данных (стека), в которой можно временно сохранить любую ячейку памяти.

1.3 Назначение выводов микроконтроллера 8051 (рис. 1.2)

· U ss - потенциал общего провода ("земли");

· U cc - основное напряжение питания +5 В;

· X1,X2 - выводы для подключения кварцевого резонатора;

· RST - вход общего сброса микроконтроллера;

· PSEN - разрешение внешней памяти программ, выдается только при обращении к внешнему ПЗУ;

· ALE - строб адреса внешней памяти;

· ЕА - отключение внутренней программной память; уровень 0 на этом входе заставляет микроконтроллер выполнять программу только из внешнего ПЗУ; игнорируя внутреннее(если последнее имеется);

Рис. 1.2. Назначение выводов 8051.

· P1 - восьмибитный квазидвунаправленный порт ввода/вывода, каждый разряд порта может быть запрограммирован как на ввод, так и на вывод информации, независимо от состояния других разрядов;

· P2 - восьмибитный квазидвунаправленный порт, аналогичный Р1, выводы этого порта используются для выдачи адресной информации при обращении к внешней памяти программ или данных (если используется 16-битовая адресация последней). Кроме того, выводы порта используются при программировании для ввода в микроконтроллер старших разрядов адреса;

· РЗ - восьмибитный квазидвунаправленный порт, аналогичный Р1, выводы этого порта могут выполнять ряд альтернативных функций, которые используются при работе таймеров, порта последовательного ввода-вывода, контроллера прерываний, и внешней памяти программ и данных;

· P0 - мультиплексируемый восьмибитный двунаправленный порт ввода-вывода информации, через этот порт в разные моменты времени выводятся младший байт адреса и данные.

Организация памяти

Вся серия MCS-51 имеет гарвардскую архитектуру, то есть раздельные адресные пространства памяти программ и данных. Структура памяти изображена на рис. 1.3.

Объем внутренней (резидентной) памяти программ (ROM, EPROM или OTP ROM), располагаемой на кристалле, в зависимости от типа микросхемы может составлять 0 (ROMless), 4К (базовый кристалл), 8К, 16К или 32К. При необходимости пользователь может расширять память программ установкой внешнего ПЗУ. Доступ к внутреннему или внешнему ПЗУ определяется значением сигнала на выводе ЕА (External Access):

EA=V cc (напряжение питания) - доступ к внутреннему ПЗУ;

EA=V ss (потенциал земли) - доступ к внешнему ПЗУ.

Для кристаллов без ПЗУ(ROMless) вывод ЕА должен быть постоянно подключен к V ss .

Рис. 1.3. Организация памяти семейства MCS-51

Строб чтения внешнего ПЗУ - (Program Store Enable) генерируется при обращении к внешней памяти программ и является неактивным во время обращения к ПЗУ, расположенному на кристалле. Область нижних адресов памяти программ используется системой прерываний. Архитектура базовой микросхемы 8051обеспечивает поддержку пяти источников прерываний:

· двух внешних прерываний;

· двух прерываний от таймеров;

· прерывания от последовательного порта.

На рис. 1.4 изображена карта нижней области программной памяти.

Рис. 1.4. Карта нижней области программной памяти

Память программ (ПЗУ)

У микроконтроллеров семейства 8051, память программ и память данных являются самостоятельными и независимыми друг от друга устройствами, адресуемыми различными командами и управляющими сигналами.

Объем встроенной памяти программ, расположенной на кристалле микроконтроллера 8051 , равен 4 Кбайт (в семействе до 32). При обращении к внешней памяти программ все микроконтроллеры семейства 8051 всегда используют 16-разрадный адрес, что обеспечивает им доступ к 64 Кбайт ПЗУ. Микроконтроллер обращается к программной памяти при чтении кода операции и операндов (используя счетчик команд PC), а также при выполнении команд копирования байта из памяти программ в аккумулятор. При выполнении команд копирования данных адресация ячейки памяти программ, из которой будут прочитаны данные, может осуществляться с использованием как счетчика PC, так и специального двухбайтового регистра-указателя данных DPTR.

Память данных (ОЗУ)

Объем расположенной на кристалле памяти данных - 128 байт. Объем внешней памяти данных может достигать 64 Кбайт. Первые 32 байта организованы в четыре банка регистров общего назначения, обозначаемых соответственно банк 0 - банк 3. Каждый из них состоит из восьми регистров R0–R7. В любой момент программе доступен, при регистровой адресации, только один банк регистров, номер которого содержится в третьем и четвертом битах слова состояния программы PSW .

Адреса битовой области памяти микроконтроллера 8051

Таблица 1.1

Адрес байта (Hex) Адреса битов по разрядам
D7 D6 D5 D4 D3 D2 D1 D0
2F 7F 7E 7D 7C 7B 7A
2E
2D 6F 6E 6D 6C 6B 6A
2C
2B 5F 5E 5D 5C 5B 5A
2A
4F 4E 4D 4C 4B 4A
3F 3E 3D 3C 3B 3A
2F 2E 2D 2C 2B 2A
1F 1E 1D 1C 1B 1A
0F 0E 0D 0C 0B 0A
20h

Оставшееся адресное пространство может конфигурироваться разработчиком по своему усмотрению: в нем можно разместить стек, системные и пользовательские области данных. Обращение к ячейкам памяти данных возможно двумя способами. Первый способ - прямая адресация ячейки памяти. В этом случае адрес ячейки является операндом соответствующей команды. Второй способ - косвенная адресация с помощью регистров-указателей R0 или R1: перед выполнением соответствующей команды в один из них должен быть занесен адрес ячейки, к которой необходимо обратиться.

Для обращения к внешней памяти данных используется только косвенная адресация с помощью регистров R0 и R1 или с помощью 16-разрядного регистра-указателя DPTR.

Часть памяти данных представляет собой битовую область, в ней имеется возможность при помощи специальных битовых команд адресоваться к каждому разряду ячеек памяти. Адрес прямо адресуемых битов может быть записан также в виде (АдресБайта).(Разряд). Соответствие этих двух способов адресации можно определить по табл. 1.1.